Prediction of Ultra-Lean Spark Ignition Engine Performances by Quasi-Dimensional Combustion Model With a Refined Laminar Flame Speed Correlation

Author:

Sok Ratnak1,Yamaguchi Kyohei1,Kusaka Jin1

Affiliation:

1. Waseda University, Building 58-226, 3-4-1 Okubo, Shinjuku, Tokyo 1698555, Japan

Abstract

Abstract The turbulent combustion in gasoline engines is highly dependent on laminar flame speed SL. A major issue of the quasi-dimensional (QD) combustion model is an accurate prediction of the SL, which is unstable under low engine speeds and ultra-lean mixture. This work investigates the applicability of the combustion model with a refined SL correlation for evaluating the combustion characteristics of a high-tumble port gasoline engine operated under ultra-lean mixtures. The SL correlation is modified and validated for a five-component gasoline surrogate. Predicted SL values from the conventional and refined functions are compared with measurements taken from a constant-volume chamber under micro-gravity conditions. The SL data are measured at reference and elevated conditions. The results show that the conventional SL overpredicts the flame speeds under all conditions. Moreover, the conventional model predicts negative SL at equivalence ratio ϕ ≤ 0.3 and ϕ ≥ 1.9, while the revised SL is well validated against the measurements. The improved SL correlation is incorporated into the QD combustion model by a user-defined function. The engine data are measured at 1000–2000 rpm under engine load net indicated mean effective pressure (IMEPn) = 0.4–0.8 MPa and ϕ = 0.5. The predicted engine performances and combustions are well validated with the measured data, and the model sensitivity analysis also shows a good agreement with the engine experiments under cycle-by-cycle variations.

Funder

Council for Science, Technology and Innovation

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference27 articles.

1. Brochure SIP “Pioneering the Future: Japanese Science, Technology and Innovation”;SIP Innovative Combustion Technology,2019

2. Investigating the Effect of Utilizing New Induction Manifold Designs on the Combustion Characteristics and Emissions of a Direct Injection Diesel Engine;Bassiony;ASME. J. Energy Resour. Technol.,2018

3. Combustion Development to Realize High Thermal Efficiency Engines;Takahashi;SAE Int. J. Engines,2016

4. Development of High Tumble Intake-Port for High Thermal Efficiency Engines;Yoshihara;SAE Technical Paper,2016

5. A Study on Combustion Characteristics of a High Compression Ratio SI Engine With High Pressure Gasoline Injection;Kaminaga;SAE Technical Paper,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3