Isothermal Splitting of CO2 to CO Using Cobalt-Ferrite Redox Looping

Author:

Burra K. G.1,Gupta A. K.1,Kerdsuwan S.2

Affiliation:

1. Department of Mechanical Engineering, The Combustion Laboratory, University of Maryland, College Park, MD 20742

2. The Waste Incineration Research Center, Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Abstract

Abstract Rising atmospheric CO2 levels from significant imbalance between carbon emissions from fossil fuel utilization, especially for energy and chemicals, and natural carbon sequestration rates is known to drive-up the global temperatures and associated catastrophic climate changes, such as rising mean sea level, glacial melting, and extinction of ecosystems. Carbon capture and utilization techniques are necessary for transition from fossil fuel infrastructure to renewable energy resources to help delay the dangers of reaching to the point of positive feedback between carbon emissions and climate change which can drive terrestrial conditions to uninhabitable levels. CO2 captured from the atmosphere directly or from flue gases of a power plant can be recycled and transformed to CO and syngas for use as energy and value-added chemicals. Utilizing renewable energy resources to drive CO2 conversion to CO via thermochemical redox looping can provide a carbon negative renewable energy conversion pathway for sustainable energy production as well as value-added products. Substituted ferrites such as Co-ferrite, Mn-ferrite were found to be promising materials to aid the conversion of CO2 to CO at lower reduction temperatures. Furthermore, the conversion of these materials in the presence of Al2O3 provided hercynite cycling, which further lowered the reduction temperature. In this paper, Co-ferrite and Co-ferrite-alumina prepared via co-precipitation were investigated to understand their potential as oxygen carriers for CO2 conversion under isothermal redox looping. Isothermal reduction looping provided improved feasibility in redox conversion since it avoids the need for temperature swinging which improves thermal efficiency. These efforts alleviate the energy losses in heat recovery while also reducing thermal stresses on both the materials and the reactor. Lab-scale testing was carried out at 1673 K on these materials for extended periods and multiple cycles to gain insights into cyclic performance and the feasibility of sintering, which is a common issue in iron oxide-based oxygen carriers. Cobalt doping provided with lowering of reduction temperature requirement at the cost of oxidation thermodynamic spontaneity that required increased oxidation temperature. At the concentrations examined, these opposing phenomena made isothermal redox operation feasible by providing high CO yields comparable with oxygen carriers in the literature, which were operated at different temperatures for reduction and oxidation. Significantly high CO yields (∼750 µmol/g) were obtained from Co-ferrite isothermal redox looping. Co-ferrite-alumina provided lower CO yields compared with Co-ferrite. The oxygen storage was similar to those reported in the literature on isothermal H2O splitting, but with improved morphological stability at high temperature, especially compared with ferrite. This pathway of oxygen carrier development is considered suitable with further requirement in optimization for scaling of renewable CO2 conversion into valuable products.

Funder

Office of Naval Research

Center for Advanced Life Cycle Engineering

University of Maryland

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference25 articles.

1. International Energy Outlook 2017;US Energy Information Administration,2017

2. The Global Carbon Cycle

3. Sustainable Hydrocarbon Fuels by Recycling CO2 and H2O With Renewable or Nuclear Energy;Graves;Renewable Sustainable Energy Rev.,2011

4. Demonstration Reactor System for the Indirect Solar-Thermochemical Reduction of Redox Particles—The Particle Mix Reactor;Richter;ASME J. Energy Resour. Technol.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3