Heat Transfer in Leading Edge, Triangular Shaped Cooling Channels With Angled Ribs Under High Rotation Numbers

Author:

Liu Yao-Hsien1,Huh Michael1,Rhee Dong-Ho2,Han Je-Chin1,Moon Hee-Koo3

Affiliation:

1. Turbine Heat Transfer Laboratory, Texas A&M University, College Station, TX 77843-3123

2. Korea Aerospace Research Institute, Daejeon 305-333, Korea

3. Solar Turbines Inc., San Diego, CA 92186

Abstract

The gas turbine blade/vane internal cooling is achieved by circulating compressed air through the cooling channels inside the turbine blade. Cooling channel geometries vary to fit the blade profile. This paper experimentally investigated the rotational effects on heat transfer in an equilateral triangular channel (Dh=1.83 cm). The triangular shaped channel is applicable to the leading edge of the gas turbine blade. Angled 45 deg ribs are placed on the leading and trailing surfaces of the test section to enhance heat transfer. The rib pitch-to-rib height ratio (P/e) is 8 and the rib height-to-channel hydraulic diameter ratio (e/Dh) is 0.087. Effect of the angled ribs under high rotation numbers and buoyancy parameters is also presented. Results show that due to the radially outward flow, heat transfer is enhanced with rotation on the trailing surface. By varying the Reynolds numbers (10,000–40,000) and the rotational speeds (0–400 rpm), the rotation number and buoyancy parameter reached in this study are 0–0.58 and 0–1.9, respectively. The higher rotation number and buoyancy parameter correlate very well and can be used to predict the rotational heat transfer in the equilateral triangular channel.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3