An Analytical Method for Cylindrical Shells With Nozzles Due to Internal Pressure and External Loads—Part I: Theoretical Foundation

Author:

Xue Ming-De1,Du Qing-Hai2,Hwang Keh-Chih1,Xiang Zhi-Hai1

Affiliation:

1. Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084, P.R. China

2. China Ship Scientific Research Center, Wuxi, Jiangsu 214082, P.R. China

Abstract

An improved version of the analytical solutions by Xue, Hwang and co-workers (1991, “Some Results on Analytical Solution of Cylindrical Shells With Large Opening,” ASME J. Pressure Vessel Technol., 113, 297–307; 1991, “The Stress Analysis of Cylindrical Shells With Rigid Inclusions Having a Large Ratio of Radii,” SMiRT 11 Transactions F, F05/2, 85–90; 1995, “The Thin Theoretical Solution for Cylindrical Shells With Large Openings,” Acta Mech. Sin., 27(4), pp. 482–488; 1995, “Stresses at the Intersection of Two Cylindrical Shells,” Nucl. Eng. Des., 154, 231–238; 1996, “A Reinforcement Design Method Based on Analysis of Large Openings in Cylindrical Pressure Vessels,” ASME J. Pressure Vessel Technol., 118, 502–506; 1999, “Analytical Solution for Cylindrical Thin Shells With Normally Intersecting Nozzles Due to External Moments on the Ends of Shells,” Sci. China, Ser. A: Math., Phys., Astron., 42(3), 293–304; 2000, “Stress Analysis of Cylindrical Shells With Nozzles Due to External Run Pipe Moments,” J. Strain Anal. Eng. Des., 35, 159–170; 2004, “Analytical Solution of Two Intersecting Cylindrical Shells Subjected to Transverse Moment on Nozzle,” Int. J. Solids Struct., 41(24–25), 6949–6962; 2005, “A Thin Shell Theoretical Solution for Two Intersecting Cylindrical Shells Due to External Branch Pipe Moments,” ASME J. Pressure Vessel Technol., 127(4), 357–368; 2005, “Theoretical Stress Analysis of Two Intersecting Cylindrical Shells Subjected to External Loads Transmitted Through Branch Pipes,” Int. J. Solids Struct., 42, 3299–3319) for two normally intersecting cylindrical shells is presented, and the applicable ranges of the theoretical solutions are successfully extended from d/D≤0.8 and λ=d/(DT)1/2≤8 to d/D≤0.9 and λ≤12. The thin shell theoretical solution is obtained by solving a complex boundary value problem for a pair of fourth-order complex-valued partial differential equations (exact Morley equations (Morley, 1959, “An Improvement on Donnell’s Approximation for Thin Walled Circular Cylinders,” Q. J. Mech. Appl. Math. 12, 89–91; Simmonds, 1966, “A Set of Simple, Accurate Equations for Circular Cylindrical Elastic Shells,” Int. J. Solids Struct., 2, 525–541)) for the shell and the nozzle. The accuracy of results is improved by some additional terms to the expressions for resultant forces and moments in terms of complex-valued displacement-stress function. The theoretical stress concentration factors due to internal pressure obtained by the improved expressions are in agreement with previously published test results. The theoretical results discussed and presented herein are in sufficient agreement with those obtained from three dimensional finite element analyses for all the seven load cases, i.e., internal pressure and six external branch pipe load components involving three orthogonal forces and the respective three orthogonal moments.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference43 articles.

1. Eringen, A. C., Naghdi, A. K., Mahmood, S. S., Thiel, C. C., and Ariman, T., 1969, “Stress Concentrations in Two Normally Intersecting Cylindrical Shells Subject to Internal Pressure,” Welding Research Council Bulletin No. 139.

2. The Determination of Elastic Stresses Near Cylinder-to-Cylinder Intersection;Lekkerkerker;Nucl. Eng. Des.

3. General Solution of Cylindrical Shells With Cut-Out;Qian;J. Dalian Institute of Technology

4. Thermal Singularities for Cylindrical Shells;Flügge

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3