Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction

Author:

Prasher Ravi S.1,Koning Paul1,Shipley James1,Devpura Amit1

Affiliation:

1. Intel Corporation, 5000 W. Chandler Blvd., Chandler, AZ 85226-3699

Abstract

This paper reports the measurement of the thermal conductivity of particle-laden polymeric thermal interface materials for three different particle volume fractions. The experimental data are further compared with the percolation model and effective medium theory. We then introduce a method of obtaining the contact resistance between the particles and the polymeric matrix by a combination of percolation modeling and experimental data. We also discuss the dependence of the mechanical response of these particle-laden polymers for different filler or particle loading. A novel mechanical length scale is defined to understand the mechanical response of these materials, and is correlated to the viscosity of these materials.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermally Enhanced Thermal Interfacial Materials;Thermal Management for Opto‐electronics Packaging and Applications;2024-05-31

2. Thermal Performance and Reliability of Liquid Metal Alloys as Thermal Interface Materials for Computing Electronics Devices;2024 IEEE 74th Electronic Components and Technology Conference (ECTC);2024-05-28

3. Single-walled carbon nanotubes to promote thermal conductance at the pillared-graphene/epoxy polymer interface;European Polymer Journal;2024-01

4. Recent research advances in hexagonal boron nitride/polymer nanocomposites with isotropic thermal conductivity;Advanced Nanocomposites;2024

5. Squeeze Flow and Thermal Resistance Characterization of Thermal Interface Materials;2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm);2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3