Affiliation:
1. Department of Mechanical Engineering, Ohio State University, 201 West 19th Avenue, Columbus, OH 43210
Abstract
A physics-based fluid mechanics model is proposed to predict spin power losses of gear pairs due to oil churning and windage. While the model is intended to simulate oil churning losses in dip-lubricated conditions, certain components of it apply to air windage losses as well. The total spin power loss is defined as the sum of (i) power losses associated with the interactions of individual gears with the fluid, and (ii) power losses due to pumping of the oil at the gear mesh. The power losses in the first group are modeled through individual formulations for drag forces induced by the fluid on a rotating gear body along its periphery and faces, as well as for eddies formed in the cavities between adjacent teeth. Gear mesh pumping losses will be predicted analytically as the power loss due to squeezing of the lubricant, as a consequence of volume contraction of the mesh space between mating gears as they rotate. The model is applied to a unity-ratio spur gear pair to quantify the individual contributions of each power loss component to the total spin power loss. The influence of operating conditions, gear geometry parameters, and lubricant properties on spin power loss are also quantified at the end. A companion paper (Seetharaman et al., 2009, “Oil Churning Power Losses of a Gear Pair: Experiments and Model Validation,” ASME J. Tribol., 131, p. 022202) provides comparisons to experiments for validation of the proposed model.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献