Torsional Vibration Extraction of Dual-Period Instantaneous Angular Speed Measurement of the Generalized Incremental Encoder

Author:

Zhang Yuhao1,Gu Yujiong2,Zhao Pengcheng3,Chen Dongchao4,Yang Kun1

Affiliation:

1. School of Energy Power and Mechanical Engineering, North China Electric Power University, Beinong Street, Beijing 102206, China

2. National Thermal Power Engineering & Technology Research Center, North China Electric Power University, Beinong Street, Beijing 102206, China

3. New Energy Operation and Maintenance Technology Department, China Huaneng Clean Energy Technology Research Institute Co., Ltd., Dingsi Road, Beijing 102209, China

4. School of Energy and Power Engineering, Northeast Electric Power University, Changchun Road, Jilin 132012, China

Abstract

Abstract Torsional vibration is key information in monitoring the condition of the shaft system. Using the vector superposition principle, the relationship between the rotation motion and the torsional vibration of the shaft is analyzed. This paper proposes a generalized incremental encoder model and constructs a piecewise function to describe the principle of the pulse output type speed measuring device. The incremental encoder uses a fixed angular increment to stamp the time component of the angular motion of the shaft, thereby establishing a discrete relationship between the angular motion of the shaft and the time component. The relationship between the angular resolution of the encoder and the torsional vibration signal sampling theorem is deduced. The asymmetric under-sampling of the torsional vibration signals is explained from the perspective of signal sampling. According to the index period invariance of the reconstruction of the encoder disk angle sequence, a dual-period instantaneous angular speed (IAS) calculation method is proposed, which uses all the time stamps, avoiding the sampling bandwidth idle caused by the single-period method, causing the torsional vibration signal to obtain more detailed information, and its analysis bandwidth is twice that of the single-period method. Simulation and experiment verified the correctness and superiority of the research content. Finally, the calculation method was packaged as a functional module and embedded in an online torsional vibration monitoring device applied to two 1000 Mw nuclear power turbine generator sets.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3