Ignition Studies of C1–C7 Natural Gas Blends at Gas-Turbine-Relevant Conditions

Author:

Sahu Amrit Bikram1,Mohamed A. Abd El-Sabor1,Panigrahy Snehasish1,Bourque Gilles2,Curran Henry1

Affiliation:

1. Combustion Chemistry Centre, School of Chemistry, Ryan Institute and MaREI National University of Ireland, Galway H91 TK33, Ireland

2. Siemens Canada Ltd, Montreal QC H9P 1A5, Canada

Abstract

Abstract New ignition delay time measurements of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840–1050 K), pressures (20–30 bar), and equivalence ratios (φ = 0.5 and 1.5). The experiments were complimented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1–2%) of n-hexane and n-heptane can lead to an increase in reactivity by ∼40–60 ms at compressed temperature (TC) = 700 K. The ignition delay time (IDT) of these mixtures decreases rapidly with an increase in concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration beyond 10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700–900 K compared to that at higher temperatures (>900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M) ↔ 2ȮH(+M) at higher temperatures while the fuel-dependent reactions such as H-atom abstraction, RȮ2 dissociation, or Q˙OOH + O2 reactions are less important compared to 700–900 K, where they are very important.

Funder

Science Foundation Ireland

Siemens Canada

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3