Thermodynamic Behavior and Equation of State for Cryogenic Helium 3-4 Mixtures

Author:

Domenikos G-R.1,Rogdakis E.1,Koronaki I.1

Affiliation:

1. National Technical University of Athens, Athens, Greece

Abstract

Abstract On this study the authors have derived and present an overall Equation of State for Helium 3 and Helium 4 mixtures. The point of the present study is to give equations that are usable for engineering low temperature applications such as dilution or Stirling refrigerators, without the need to make any approximations or having to use different models for different phase regions. The offered model uses all the existing data, experimental and theoretical, describing the different phases of the Helium 3-4 mixture. Additionally, to the pure data, in areas where no direct data exist the presented equations are such that they follow the expected and observed behaviors and in parallel continuously connecting the data refence points while being self-coherent and able to correlate the different thermodynamic values and their derivatives with each other. Furthermore, the effects of mixing properties in the total values have been studied and through the understanding and modeling of their behavior, combined with the equations of state for the pure isotopes the authors have been able to extend the range of the equations outside of any current models by offering a range from near absolute zero to over the lambda line of Helium 4. Because of its importance in applications also the osmotic pressure of the mixture has been included. Lastly in order to make the model more usable for thermodynamic cycles the thermodynamic maps have been created where one can directly foresee the expected behaviors without the need to run the calculations.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3