Understanding the Influence of Process Parameters for Minimizing Defects in 3D Printed Parts Through Remote Monitoring

Author:

Bhandarkar Vivek V.1,Patil Ishant G.1,Shahare Harshal Y.1,Tandon Puneet1

Affiliation:

1. Pandit Dwarka Prasad Mishra Indian Institute of Information Technology, Design and Manufacturing , Jabalpur, India

Abstract

Abstract Although fused deposition modeling (FDM) can fabricate complex functional components with desired structures, various defects emerge due to the diverse process parameters used in the process, which have a substantial impact on the quality and mechanical properties of the manufactured FDM parts. Therefore, the selection of suitable process parameters is an important design consideration for improving component quality. In the proposed work, the Taguchi optimization approach was used to optimize FDM process parameters to eliminate warpage defects in 3D printed parts. Infill pattern, infill density, raster angle, printing speed, layer height, build plate temperature, and extruder temperature were selected as the process parameters. Polylactic acid (PLA) was used to make the specimens using the Creality Ender-3 3D printer. The entire fabrication process was remotely monitored by interfacing the Raspberry Pi controller and camera with the OctoPrint platform. The influence of selected factors on warpage defect was evaluated and optimized using Analysis of Variance (ANOVA), the signal-to-noise ratio (S/N ratio), and a linear regression model. The results were later experimentally validated. The applicability of the optimized 3D printed part was verified by subjecting them to tensile tests.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3