Combustion and Vaporization of Deformable Fuel Droplets Using Direct Numerical Simulation

Author:

Setiya Meha1,Palmore John A.1

Affiliation:

1. Virginia Polytechnic Institute and State University (Virginia Tech) , Blacksburg, Virginia, United States

Abstract

Abstract This study focuses on the effects on evaporation and combustion of a single component jet fuel surrogate. Due to an imbalance in the surface tension and aerodynamic forces, the large droplets have a tendency to deform. The effect of the shape change of a droplet on its combustion is studied at a moderate Reynolds number by varying the Weber number. A simplified chemical reaction mechanism for hydrocarbons is used for the combustion of the droplet. Through this study, the effect of different Weber numbers is investigated on the total evaporation rate, further on droplet combustion, and the flame shape. The results of this study show an increase of 2% increase in total evaporation rate (m) for higher Weber number We = 12 as compared to low Weber number (We = 1) case. Though, the increase in m is small, the results show a net positive effect of Weber number on the total evaporation. In terms of combustion, the combustion process stays unaffected by the droplet shape as the mass burning rate is nearly the same for low as well as high Weber number. The potential reasoning could be that the interaction between the flow and geometry of droplet in two dimensions (2-D) is insufficient to explain the physics. Moreover, it is possible that the reaction rate which is faster in nature is dominating over the evaporation rate. Such observations require more detailed work in three dimensions (3-D) for future.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3