Integrating Sequence Learning and Game Theory to Predict Design Decisions Under Competition

Author:

Bayrak Alparslan Emrah1,Sha Zhenghui2

Affiliation:

1. School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030

2. Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701

Abstract

Abstract Design can be viewed as a sequential and iterative search process. Fundamental understanding and computational modeling of human sequential design decisions are essential for developing new methods in design automation and human–AI collaboration. This paper presents an approach for predicting designers’ future search behaviors in a sequential design process under an unknown objective function by combining sequence learning with game theory. While the majority of existing studies focus on analyzing sequential design decisions from the descriptive and prescriptive point of view, this study is motivated to develop a predictive framework. We use data containing designers’ actual sequential search decisions under competition collected from a black-box function optimization game developed previously. We integrate the long short-term memory networks with the Delta method to predict the next sampling point with a distribution, and combine this model with a non-cooperative game to predict whether a designer will stop searching the design space or not based on their belief of the opponent’s best design. In the function optimization game, the proposed model accurately predicts 82% of the next design variable values and 92% of the next function values in the test data with an upper and lower bound, suggesting that a long short-term memory network can effectively predict the next design decisions based on their past decisions. Further, the game-theoretic model predicts that 60.8% of the participants stop searching for designs sooner than they actually do while accurately predicting when the remaining 39.2% of the participants stop. These results suggest that a majority of the designers show a strong tendency to overestimate their opponents’ performance, leading them to spend more on searching for better designs than they would have, had they known their opponents’ actual performance.

Funder

U.S. National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference41 articles.

1. 2221: Systematic Approach to the Design of Technical Systems and Products;VDI,1993

2. Should Designers Worry About Market Systems?;Shiau;ASME J. Mech. Des.,2009

3. Judgment Under Uncertainty: Heuristics and Biases;Tversky;Science,1974

4. Measures of Anchoring in Estimation Tasks;Jacowitz;Personality Soc. Psychol. Bull.,1995

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3