Tip Leakage Behavior and Large Coherent Perturbation Analysis of an Axial–Radial Combined Compressor With Outlet Distortion

Author:

Fu Li1,Yang Ce1,Hu Chenxing1,Shi Xin1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Abstract Increasing performance requirements and compact structure design promote the generation of axial–radial combined compressors. However, its complex structure and asymmetrical outlet boundary cause difficulty to get an in-depth comprehension of the flow unsteadiness associated with spike-stall. In this work, unsteady full-annular simulations of an axial–radial combined compressor coupled with performance experiment validations were carried out. Based on the overall understanding of outlet distortion on each component, the general feature of tip leakage flow with asymmetrical outlet boundary was extracted. The temporal and spatial development of large coherent perturbations was revealed by the decomposition and reconstruction of the transient flow data with the dynamic mode decomposition approach. The results demonstrate that the outlet distortion can propagate reversely to the compressor inlet and the degree of distortion decreases gradually, which leads to the highest possibility for radial rotor to suffer from flow unsteadiness. In the circumferential location with distortion affected, the leakage momentum of the adjacent blade leading edge is enhanced by the secondary leakage, inducing the expansion of tip leakage vortex and causing flow instability. Besides organized perturbation structures related to mean flow and blade passing frequency, two large low-frequency stall perturbations approximately one-third and three-fourth rotor frequency was captured by the dynamic mode decomposition method, which is caused by volute potential effect and stator/rotor interference, respectively. The former occurs in the radial rotor and decays during its propagation, while the latter always exists owing to the multiple rotor/stator or stator/rotor interference in the axial–radial combined compressor.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Full annulus simulation on a multistage axial-centrifugal combined compressor;Journal of the Global Power and Propulsion Society;2024-09-06

2. Aerodynamic instability evolution of a multi-stage combined compressor;Chinese Journal of Aeronautics;2024-08

3. Unsteady Analysis of Secondary Vortex Formations Within An Axial Compressor Stage with Tandem Rotor;Arabian Journal for Science and Engineering;2024-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3