Bridging Topological Results and Thin-Walled Frame Structures Considering Manufacturability

Author:

Bai Jiantao1,Zhao Yanfang2,Meng Guangwei2,Zuo Wenjie1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China

2. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China

Abstract

Abstract Topology optimization has been intensively studied and extensively applied in engineering design. However, the optimized results often take the form of a solid frame structure; hence, it is difficult to apply the topological results in the design of a thin-walled frame structure. Therefore, this paper proposes a novel bridging method to transform the topological results into a lightweight thin-walled frame structure while satisfying the stiffness and manufacturing requirements. First, the optimized topological results are obtained using the classical topology optimization method, which is smoothed to reduce structural complexity. Then, the initial thin-walled frame structure is created by referring to the smoothed topological results, in which the thin-walled cross section is designed according to the mechanical properties and manufacturing requirements. Furthermore, the size and shape of the thin-walled frame structure is optimized to minimize mass with the stiffness and manufacturing constraints. Finally, numerical examples demonstrate that the proposed method can reasonably design an optimized thin-walled frame structure from the topological results.

Funder

National Key Research and Development Program of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3