Unsteady Analysis of Blade and Tip Heat Transfer as Influenced by the Upstream Momentum and Thermal Wakes

Author:

Ameri Ali A.1,Rigby David L.2,Steinthorsson Erlendur3,Heidmann James4,Fabian John C.4

Affiliation:

1. Department of Aerospace Engineering, Ohio State University, Columbus, OH 43210

2. ASRC Aerospace, NASA Glenn Research Center, Cleveland, OH 44135

3. A and E Consulting, Westlake, OH 44140

4. NASA Glenn Research Center, Cleveland, OH 44135

Abstract

The effect of the upstream wake on the time averaged rotor blade heat transfer was numerically investigated. The geometry and flow conditions of the first stage turbine blade of GE’s E3 engine with a tip clearance equal to 2% of the span were utilized. The upstream wake had both a total pressure and temperature deficit. The rotor inlet conditions were determined from a steady analysis of the cooled upstream vane. Comparisons between the time average of the unsteady rotor blade heat transfer and the steady analysis, which used the average inlet conditions of unsteady cases, are made to illuminate the differences between the steady and unsteady calculations. To help in the understanding of the differences between steady and unsteady results on one hand and to evaluate the effect of the total temperature wake on the other, separate calculations were performed to obtain the rotor heat transfer and adiabatic wall temperatures. It was found that the Nusselt number distribution for the time average of unsteady heat transfer is invariant if normalized by the difference in the adiabatic and wall temperatures. It appeared though that near the endwalls the Nusselt number distribution did depend on the thermal wake strength. Differences between steady and time averaged unsteady heat transfer results of up to 20% were seen on the blade surface. Differences were less on the blade tip surface.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3