Effect of Strain-Hardening Exponent and Strain Concentrations on the Bursting Behavior of Pressure Vessels

Author:

Royer C. P.1,Rolfe S. T.2

Affiliation:

1. Department of Civil Engineering, University of Kansas, Lawrence, Kan.

2. University of Kansas, Lawrence, Kan.

Abstract

Studies by the Subcommittee for Effective Utilization of Yield Strength of the Pressure Vessel Research Committee of the Welding Research Council have provided a better understanding of the behavior of pressure vessels in the bursting mode of failure. Specifically, these studies have shown that high-strength steels can be more effectively utilized in pressure vessel applications, and with appropriate safety. However, before specific Code changes are recommended, the possible influence of undetected sharp flaws on the burst pressure, as predicted by the modified Svensson equation, should be established. Accordingly, a study of six notched pressure vessels was conducted to establish the limitations of the Svensson equation with respect to severe strain concentrations, namely, sharp longitudinal notches. Three steels (A517, A516, and 304SS) having a wide range of strain-hardening exponents (0.09, 0.19, and 0.59) were used to fabricate thin-walled pressure vessels (16-in. (406 mm) O.D., 1/2 in. (13 mm) wall thickness, 48-in. (1.22 m) length). Each vessel had a 15-in. (381 mm) long sharp machined notch with flaw depths ranging from 15 to 35 percent of the wall thickness. These vessels were tested hydrostatically to burst at room temperature. All failures were ductile. The results indicate that for pressure vessel steels having nominal yield strength up to 115 ksi (793 MN/m2) and normal ductility and toughness, the modified Svensson equation can be used to predict burst pressure very reliably as long as the flaw depths are less than 25 percent of the wall thickness. On the basis of these test results, as well as burst tests of vessels with moderate strain concentrations such as nozzles and flat end closures, it is recommended that the terms Fcyl and Fsph (factors that describe the effect of strain-hardening exponent on the bursting behavior of cylinders and spheres) be incorporated into the appropriate Code provisions. It is further recommended that the appropriate Code committee consider a possible reduction in the factor of safety against bursting on the basis of the results of this investigation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the impact factor of burst capacity models for defect-free pipelines;International Journal of Pressure Vessels and Piping;2022-12

2. Implementation of the Tresca yield criterion in finite element analysis of burst capacity of pipelines;International Journal of Pressure Vessels and Piping;2019-05

3. An Approximate Method of Determining the Load of Plastic Failure in Pressure Vessels with Nozzles;Chemical and Petroleum Engineering;2019-03

4. Dynamic Burst Pressure Simulation of Cylindrical Shells;Journal of Pressure Vessel Technology;2009-10-13

5. Strength Model Uncertainties of Burst, Yielding, and Excessive Bending of Piping;Journal of Pressure Vessel Technology;2009-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3