Implementation of a New Smart-Lubricant Model Using Generalized Newtonian Approach in Soft Elastohydrodynamic Lubrication

Author:

Meghpara Nirav Kantilal11,Kumar Punit1,Bhushan Gian1

Affiliation:

1. National Institute of Technology Kurukshetra Department of Mechanical Engineering, , Thanesar, Haryana 136119 , India

Abstract

Abstract This is an inceptive attempt to replace the classical Bingham fluid model with a continuous double Newtonian power law-based constitutive equation for smart lubricants like magneto-rheological, electro-rheological, and ferro-fluids. The implementation of Bingham model in hydrodynamic (HD) and elastohydrodynamic (EHD) lubrication analyses is highly challenging and inconvenient due to its inherent discontinuity. Therefore, the present work demonstrates the use of an already existing rheological model with an appropriate set of parameters to describe the flow behavior of smart lubricants in a soft-EHD lubrication algorithm based on the generalized Newtonian approach. The formation of both floating and adherent cores validates the proposed model. An extensive parametric study is also performed to explore the effects of operating speed, load, and slide-to-roll ratio on the soft-EHL characteristics. The results are very promising, showing that it's possible to customize smart lubricants to match specific operating conditions. This is achieved by adjusting the yield stress value accordingly, allowing for the desired variation in lubrication characteristics.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3