Group Combustion of a Cylindrical Cloud of Char/Carbon Particles

Author:

Annamalai K.1,Ramalingam S.1,Dahdah T.1,Chi D.1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

Abstract

Extensive experiments were carried out in the past in order to obtain kinetics data on the pyrolysis of coal particles and the char reactions. The literature survey distinctively reveals two kinds of studies: (i) Individual Particle Combustion (IPC) and (ii) Combustion of Particle Streams or Clouds. The experimental data obtained with particle streams are normally interpreted using IPC models with the a priori assumption that the cloud is dilute. But the term “dilute” is rarely quantified and justified considering the collective behavior of a cloud of particles. The group combustion model accounts for the reduction in burning rate due to the collective behavior of a large number of particles. While the spherical group combustion model may be employed for coal/char spray combustion modeling, the cylindrical group combustion model is more useful in interpreting the experimental data obtained with a monosized stream of particles. Hence a cylindrical group combustion model is presented here. As in the case of spherical group combustion models, there exist three modes of combustion: (i) Individual Particle Combustion (IPC), (ii) Group Combustion (GC), and (iii) Sheath Combustion (SC). Within the range of parameters studied, it appears that the cylindrical and spherical cloud combustion models yield similar results on nondimensional cloud burning rates and on the combustion modes of a cloud of particles. The results from group theory are then used to identify the mode of combustion (IPC, GC, or SC) and to interpret the experimental data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3