High-Order Solution of Viscoelastic Fluids Using the Discontinuous Galerkin Method

Author:

Mirzakhalili Ehsan1,Nejat Amir2

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, North Karegar Avenue, P.O. Box 11155-4563, Tehran, Iran e-mail:

2. Assistant Professor School of Mechanical Engineering, College of Engineering, University of Tehran, North Karegar Avenue, P.O. Box 11155-4563, Tehran, Iran e-mail:

Abstract

In this paper, the high-order solution of a viscoelastic fluid is investigated using the discontinuous Galerkin (DG) method. The Oldroyd-B model is used to describe the viscoelastic behavior of the fluid flow. The high-order accuracy of the applied DG method is verified for a Newtonian benchmark problem with an exact solution. Next, the same algorithm is utilized to solve the viscoelastic flow by separating the stress tensor into the stress due to the Newtonian solvent and the stress due to the solved viscoelastic polymers. The high-order accuracy of the solution for viscoelastic flow is demonstrated by solving the planar Poiseuille flow. Then, the planar contraction problem is simulated as a benchmark for the viscoelastic flow. The obtained results are in good agreement with the results in the literature for both creeping and inertial flow when high-order polynomials were used even on coarse meshes.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3