Recipes for Reconstituting Skin

Author:

Bell E.1,Rosenberg M.1,Kemp P.1,Gay R.1,Green G. D.1,Muthukumaran N.1,Nolte C.1

Affiliation:

1. Organogenesis Inc., Cambridge, Massachusetts 02142

Abstract

Reconstituted Living Skin Equivalent™ (LSE™) is made up of a dermal equivalent (DE) on which keratinocytes are plated where they give rise to a multilayered differentiated epidermis. The dermal equivalent develops through interactions between fibroblasts and collagen fibrils that begin to form after the cell-matrix precursor is cast. The gel that forms as a result of collagen polymerization and fluid trapping is contracted uniformly in all dimensions. By securing it at ends and edges in the mold in which it is cast, the final dimensions, strength and morphology of the forming tissue are altered. The same phenomena are seen in casting tubular tissues for the fabrication of small caliber blood vessel equivalents. The cells of the dermal equivalent are biosynthetically active and enrich the matrix to different degrees with secretory products, depending on how the cells are stimulated and on the presence or absence of an epidermis. Collagen biosynthesis by dermal cells in the DE is sensitive to growth factors, ascorbate concentrations and amino acid pools. Both ascorbate and TGFβ1 increase total collagen biosynthesis at least two-fold by one week after tissue formation. With TGFβ1 present, the capacity of cells in the DE to synthesize collagen increases with time, over a two-week period. If ascorbate (200 μg/ml) is added just after the tissue is cast and daily thereafter, contraction lattice is blocked, and collagen biosynthesis is enhanced relative to contracted controls that had received 200 μg/ml ascorbate once. The increase was nearly an order of magnitude over that of controls and was coordinate with a comparable increase in hyaluronate and sulfated glycosaminoglycan (GAG) production as shown by TCA-precipitable glucosamine in the intercellular matrix of the DE. Both the LSE and the Living Dermal Equivalent™ (LDE™) exhibit complex responses to UV radiation and to various chemicals that are greatly different from responses given by monolayered cells. In general, threshold doses are elevated by one or more orders of magnitude for the tissues as compared with cells in monolayer, with the LSE exhibiting higher thresholds than the DE. The immunogenicity of the human LSE has been tested in vitro. Its cells are shown to be unable to stimulate a response in a mixed lymphocyte reaction (MLR) even after Class II antigens are induced by exposure to cytokines. The basis for the immunologic neutrality of the LSE can be referred to the absence of immune system (IS) cells normally present in skin and to the specific antigenic profiles of nonimmune system (NIS) cells that must be different from those of IS cells and which, even after Class II induction, are not allostimulatory. The generality of immunologic neutrality is an essential consideration in the fabrication of tissue and organ equivalents for grafting. The idea that it can be made a graft property has been formalized in the Neutral Allograft Hypothesis.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3