Variables Affecting NOx Formation in Lean-Premixed Combustion

Author:

Steele R. C.1,Jarrett A. C.1,Malte P. C.1,Tonouchi J. H.1,Nicol D. G.1

Affiliation:

1. University of Washington, Dept. of Mechanical Engineering, Seattle, WA 98195

Abstract

The formation of NOx in lean-premixed, high-intensity combustion is examined as a function of several of the relevant variables. The variables are the combustion temperature and pressure, fuel type, combustion zone residence time, mixture inlet temperature, reactor surface-to-volume ratio, and inlet jet size. The effects of these variables are examined by using jet-stirred reactors and chemical reactor modeling. The atmospheric pressure experiments have been completed and are fully reported. The results cover the combustion temperature range (measured) of 1500 to 1850 K, and include the following four fuels: methane, ethylene, propane, and carbon monoxide/hydrogen mixtures. The reactor residence time is varied from 1.7 to 7.4 ms, with most of the work done at 3.5 ms. The mixture inlet temperature is taken as 300 and 600 K, and two inlet jet sizes are used. Elevated pressure experiments are reported for pressures up to 7.1 atm for methane combustion at 4.0 ms with a mixture inlet temperature of 300 K. Experimental results are compared to chemical reactor modeling. This is accomplished by using a detailed chemical kinetic mechanism in a chemical reactor model, consisting of a perfectly stirred reactor (PSR) followed by a plug flow reactor (PFR). The methane results are also compared to several laboratory-scale and industrial-scale burners operated at simulated gas turbine engine conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3