Smart Rotor With Trailing Edge Flap Considering Bend–Twist Coupling and Aerodynamic Damping: Modeling and Control

Author:

Zhang Wenguang1,Liu Ruijie2,Wang Yifeng2,Wang Yuanyuan2,Zhang Xu3

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China e-mail:

2. School of Control and Computer Engineering, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China e-mail:

3. School of Automation Science and Electrical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 110093, China e-mail:

Abstract

Aerodynamic damping and bend–twist coupling significantly affect the dynamic response of wind turbines. In this paper, unsteady aerodynamics, aerodynamic damping, and bend–twist coupling (twist-towards-feather) are combined to establish a smart rotor model with trailing edge flaps (TEFs) based on a National Renewable Energy Laboratory (NREL) 5 MW reference horizontal-axis wind turbine. The overall idea is to quantitatively evaluate the influence of aerodynamic damping and bend–twist coupling on the smart rotor and to present the control effect of the TEFs under normal wind turbine operating conditions. An aerodynamic model considering the dynamic stall and aerodynamic damping as well as a structural bend–twist coupling model with the influence of gravity and centrifugal force are incorporated into the coupling analysis. The model verification shows that the present model is relatively stable under highly unsteady wind conditions. Then, a robust adaptive tracking (RAT) controller is designed to suppress fluctuations in both the flapwise tip deflection and output power. The simulations show an average reduction of up to 63.86% in the flapwise tip deflection power spectral density (PSD) of blade 1 at the 1P frequency, with an average reduction in the standard deviation of the output power of up to 34.33%.

Funder

Beijing Municipal Education Commission

Central China Normal University

National Key Scientific Instrument and Equipment Development Projects of China

Publisher

ASME International

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3