Machine-Learning Metacomputing for Materials Science Data

Author:

Steuben J. C.1,Geltmacher A. B.23,Rodriguez S. N.1,Birnbaum A. J.1,Graber B. D.1,Rawlings A. K.1,Iliopoulos A. P.1,Michopoulos J. G.1

Affiliation:

1. U.S. Naval Research Laboratory Computational Multiphysics Systems Laboratory, , Washington, DC 20375

2. United States Naval Research Laboratory Simulations and Imaging Section, Materials Science and Technology Division, , Washington, DC 20375

3. U.S. Naval Research Laboratory Simulations and Imaging Section, Materials Science and Technology Division, , Washington, DC 20375

Abstract

Abstract Materials science requires the collection and analysis of great quantities of data. These data almost invariably require various post-acquisition computation to remove noise, classify observations, fit parametric models, or perform other operations. Recently developed machine-learning (ML) algorithms have demonstrated great capability for performing many of these operations, and often produce higher quality output than traditional methods. However, it has been widely observed that such algorithms often suffer from issues such as limited generalizability and the tendency to “over fit” to the input data. In order to address such issues, this work introduces a metacomputing framework capable of systematically selecting, tuning, and training the best available machine-learning model in order to process an input dataset. In addition, a unique “cross-training” methodology is used to incorporate underlying physics or multiphysics relationships into the structure of the resultant ML model. This metacomputing approach is demonstrated on four example problems: repairing “gaps” in a multiphysics dataset, improving the output of electron back-scatter detection crystallographic measurements, removing spurious artifacts from X-ray microtomography data, and identifying material constitutive relationships from tensile test data. The performance of the metacomputing framework on these disparate problems is discussed, as are future plans for further deploying metacomputing technologies in the context of materials science and mechanical engineering.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3