Affiliation:
1. Institute of Product and Process Innovation, Leuphana University of Lueneburg, Lueneburg 21339, Germany e-mail:
2. Institute of Product and Process Innovation, Leuphana University of Lueneburg, Lueneburg 21339, Germany
Abstract
Deformation-free clamping plays an important role in manufacturing systems helping to ensure zero-defect production. The fixture of workpieces during machining processes poses challenges not only for microparts but also for thin-walled pieces or free-form surfaces in macromanufacturing. To address this challenge, a nontraditional adhesive technique, using frozen water to clamp, is introduced in this paper. By increasing the cooling power and thus reducing the temperature of the clamping plate, higher adhesive ice strength and, therefore, a safer clamping system during machining process, can be achieved. The objective of this investigation is to ensure a stable low temperature and to compensate for thermal disturbances. Thanks to their structural robustness, Lyapunov-based control strategies demonstrate an appropriate capability to achieve these results in real industrial applications. Model design of the clamping system as well as simulation and experimental results are shown and discussed.
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献