Autoignition Delay Time Measurements of Methane, Ethane, and Propane Pure Fuels and Methane-Based Fuel Blends

Author:

Holton M. M.1,Gokulakrishnan P.1,Klassen M. S.1,Roby R. J.1,Jackson G. S.2

Affiliation:

1. Combustion Science and Engineering, Inc., 8940 Old Annapolis Road, Suite L, Columbia, MD 21045

2. Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742

Abstract

Autoignition delay experiments in air have been performed in an atmospheric flow reactor using typical natural gas components, namely, methane, ethane, and propane. Autoignition delay measurements were also made for binary fuel mixtures of methane/ethane and methane/propane, and ternary mixtures of methane/ethane/propane. The effect of CO2 addition to the methane-based fuel blends on autoignition delay times was also investigated. Equivalence ratios for the experiments ranged between 0.5 and 1.25, and temperatures ranged from 930 K to 1140 K. Consistent with past studies, increasing equivalence ratio and increasing inlet temperatures over these ranges decreased autoignition delay times. Furthermore, addition of 5–10% ethane or propane decreased autoignition delay time of the binary methane-based fuel by 30–50%. Further addition of either ethane or propane showed less significant reduction of autoignition delays. Addition of 5–10% CO2 slightly decreased the autoignition delay times of methane fuel mixtures. Arrhenius correlations were used to derive activation energies for the ignition of the pure fuels and their mixtures. Results show a reduction in activation energies at the higher temperatures studied, which suggests a change in ignition chemistry at very high temperatures. Measurements show relatively good agreement with predictions from a detailed kinetics mechanism, specifically developed to model ignition chemistry of C1-C3 alkanes.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3