A Case Study of Deep Reinforcement Learning for Engineering Design: Application to Microfluidic Devices for Flow Sculpting

Author:

Lee Xian Yeow1,Balu Aditya1,Stoecklein Daniel2,Ganapathysubramanian Baskar1,Sarkar Soumik1

Affiliation:

1. Department of Mechanical Engineering, Iowa State University, Ames, IA 50011

2. Department of Bioengineering, University of California, Los Angeles, CA 90095

Abstract

Abstract Efficient exploration of design spaces is highly sought after in engineering applications. A spectrum of tools has been proposed to deal with the computational difficulties associated with such problems. In the context of our case study, these tools can be broadly classified into optimization and supervised learning approaches. Optimization approaches, while successful, are inherently data inefficient, with evolutionary optimization-based methods being a good example. This inefficiency stems from data not being reused from previous design explorations. Alternately, supervised learning-based design paradigms are data efficient. However, the quality of ensuing solutions depends heavily on the quality of data available. Furthermore, it is difficult to incorporate physics models and domain knowledge aspects of design exploration into pure-learning-based methods. In this work, we formulate a reinforcement learning (RL)-based design framework that mitigates disadvantages of both approaches. Our framework simultaneously finds solutions that are more efficient compared with supervised learning approaches while using data more efficiently compared with genetic algorithm (GA)-based optimization approaches. We illustrate our framework on a problem of microfluidic device design for flow sculpting, and our results show that a single generic RL agent is capable of exploring the solution space to achieve multiple design objectives. Additionally, we demonstrate that the RL agent can be used to solve more complex problems using a targeted refinement step. Thus, we address the data efficiency limitation of optimization-based methods and the limited data problem of supervised learning-based methods. The versatility of our framework is illustrated by utilizing it to gain domain insights and to incorporate domain knowledge. We envision such RL frameworks to have an impact on design science.

Funder

U.S. AFOSR

Iowa State University

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3