Numerically Stable Design Optimization With Price Competition

Author:

Morrow W. Ross1,Mineroff Joshua1,Whitefoot Kate S.2

Affiliation:

1. Mechanical Engineering, Iowa State University, Ames, Iowa 50011 e-mail:

2. National Academy of Engineering, Washington, DC 20418 e-mail:

Abstract

Researchers in decision-based design (DBD) have suggested that business objectives, e.g., profits, should replace engineering requirements or performance metrics as the objective for engineering design. This requires modeling market performance, including consumer preferences and competition between firms. Game-theoretic “design-then-pricing” models—i.e., product design anticipating future price competition–provide an important framework for integrating consumer preferences and competition when design decisions must be made before prices are decided by a firm or by its competitors. This article concerns computational optimization in a design-then-pricing model. We argue that some approaches may be fundamentally difficult for existing solvers and propose a method that exhibits both improved efficiency and reliability relative to existing methods. Numerical results for a vehicle design example validate our theoretical arguments and examine the impact of anticipating pricing competition on design decisions. We find that anticipating pricing competition, while potentially important for accurately forecasting profits, does not necessarily have a significant effect on optimal design decisions. Most existing examples suggest otherwise, anticipating competition in prices is important to choosing optimal designs. Our example differs in the importance of design constraints, that reduce the influence the market model has on optimal designs.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference104 articles.

1. A Framework for Decision-Based Engineering Design;ASME J. Mech. Des.,1998

2. Economic-Based Distributed Optimal Design,2001

3. An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling;ASME J. Mech. Des.,2003

4. Analytical Target Cascading: An Enterprise Context in Optimal Product Design;ASME J. Mech. Des.,2006

5. Should Designers Worry About Market Systems?;ASME J. Mech. Des.,2009

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3