Enabling Flexibility in Engineering Systems: A Taxonomy of Procedures and a Design Framework

Author:

Cardin Michel-Alexandre1

Affiliation:

1. Department of Industrial and Systems Engineering, National University of Singapore, Block E1A, #06-25, 1 Engineering Drive 2, 117576Singapore e-mail:

Abstract

This paper presents a five-phase taxonomy of systematic procedures to enable flexibility in the design and management of engineering systems operating under uncertainty. The taxonomy integrates contributions from surveys, individual articles, and books from the literature on engineering design, manufacturing, product development, and real options analysis obtained from professional e-index search engines. Thirty design procedures were classified based on the kind of early conceptual activities they support: baseline design, uncertainty recognition, concept generation, design space exploration, and process management. Each procedure is evaluated based on ease of use to enable flexibility analysis, whether it can be used directly in collaborative design activities, and has a proven applicability record in industry and research. The organizing principles integrate the procedures into a cohesive and systematic design framework. Demonstration applications on engineering systems case studies show that it helps designers select relevant procedures in different phases of the design process, depending on the context, available analytical resources, and objectives. In turn, the case studies show that the design framework helps generate concepts with improved lifecycle performance compared to baseline concepts. The taxonomy provides guidance to organize ongoing research efforts, and highlights potential contribution areas in this field of engineering design research.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference114 articles.

1. Engineering Systems Division Strategic Report;ESD,2011

2. Design for Changeability (DFC): Principles to Enable Changes in Systems Throughout Their Entire Lifecycle;J. Syst. Eng.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3