Effect of Heat Treatment on Mechanical and Tribological Properties of Centrifugally Cast Functionally Graded Cu/Al2O3 Composite

Author:

Sam Manu1,Radhika N.1

Affiliation:

1. Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore 641112, India e-mail:

Abstract

A functionally graded Cu–10Sn–5Ni metal matrix composite (MMC) reinforced with 10 wt % of Al2O3 particles was fabricated using the centrifugal casting process with dimension Φout100 × Φin85 × 100 mm. The mechanical and wear resistance of the composite has been enhanced through heat treatment. Samples from of the inner zone (9–15 mm) were considered for heat treatment, as this zone has higher concentration of less dense hard reinforcement particles. The samples were solutionized (620 °C/60 min) and water quenched followed by aging at different temperatures (400, 450, and 550 °C) and time (1–3 h). Optimum parametric combination (450 °C, 3 h) with maximum hardness (269 HV) was considered for further analysis. Dry sliding wear experiments were conducted based on Taguchi's L27 array using parameters such as applied loads (10, 20, and 30 N), sliding distances (500, 1000, and 1500 m), and sliding velocities (1, 2, and 3 m/s). Results revealed that the wear rate increased with load and distance whereas it decreased initially and then increased with velocity. Optimum condition for maximum wear resistance was determined using signal-to-noise (S/N) ratio. Analysis of variance (ANOVA) predicted the major influential parameter as load, followed by velocity and distance. Scanning electron microscope (SEM) analysis of worn surfaces predicted the wear mechanism, observing more delamination due to increase in contact patch when applied load increased. Results infer 8% increase in hardness after heat treatment, making it suitable for load bearing applications.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference22 articles.

1. Characteristics Bronze/Al2O3 (Ni) Reinforcement Metal Matrix Composite Produced by Current Activated Sintering;Acta Phys. Pol. A,2013

2. Corrosion Behaviour of Al/Al3Ti and Al/Al3Zr Functionally Graded Materials Produced by Centrifugal Solid-Particle Method: Influence of the Intermetallics Volume Fraction;Corros. Sci.,2011

3. Investigation of Mechanical Properties of Cu/SiC Composite: Effect of SiC Particles Size and Volume Fraction;Mater. Sci. Eng. A,2011

4. Copper Matrix SiC and Al2O3 Particulate Composites by Powder Metallurgy Technique;Mater. Lett.,2002

5. Tribological Properties of Copper Alloy-Based Composites Reinforced With Tungsten Carbide Particles;Wear,2011

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3