An Integrated Framework for Probabilistic Optimization Using Inverse Reliability Strategy

Author:

Du Xiaoping1,Sudjianto Agus2,Chen Wei3

Affiliation:

1. University of Missouri at Rolla, Rolla, MO

2. Ford Motor Company, Dearborn, MI

3. Northwestern University, Evanston, IL

Abstract

In this work, we propose an integrated framework for probabilistic optimization that can bring both the design objective robustness and the probabilistic constraints into account. The fundamental development of this work is the employment of an inverse reliability strategy that uses percentile performance for assessing both the objective robustness and probabilistic constraints. The percentile formulation for objective robustness provides an accurate probabilistic measure for robustness and more reasonable compound noise combinations. For the probabilistic constraints, compared to a traditional probabilistic model, the proposed formulation is more efficient since it only evaluates the constraint functions at the required reliability levels. The other major development of this work is a new search algorithm for the Most Probable Point of Inverse Reliability (MPPIR) that can be used to efficiently evaluate the performance robustness and percentile performance in the proposed formulation. Multiple techniques are employed in the MPPIR search, including the steepest decent direction and an arc search. The algorithm is applicable to general non-concave and non-convex functions of system performance with random variables following any continuous distributions. The effectiveness of the MPPIR search algorithm is verified using example problems. Overall, an engineering example on integrated robust and reliability design of a vehicle combustion engine piston is used to illustrate the benefits of the proposed method.

Publisher

ASMEDC

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3