Influence of Unsteady Wake With Trailing Edge Coolant Ejection on Turbine Blade Film Cooling

Author:

Li Shiou-Jiuan1,Rallabandi Akhilesh P.1,Han Je-Chin1

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, TexasA&M University, College Station, TX 77843-3123

Abstract

Detailed film cooling effectiveness distributions along a modeled turbine rotor blade under the combined effects of an upstream trailing edge unsteady wake with coolant ejection are presented using the pressure sensitive paint (PSP) mass transfer analogy method. The experiment is conducted in a low speed wind tunnel facility with a five blade linear cascade. The exit Reynolds number based on the axial chord is 370,000. Unsteady wakes and trailing edge coolant jets are produced by a spoked wheel-type wake generator with hollow rods equipped with several coolant ejections from holes. The coolant-to-mainstream density ratios for both the blade and trailing edge coolant ejection range from 1.5 to 2.0 for simulating realistic engine conditions. Blade blowing ratio studies are 0.5 and 1.0 on the suction surface and 1.0 and 2.0 on the pressure surface. The trailing edge jet blowing ratio and Strouhal numbers are 1.0 and 0.12, respectively. The results show that the unsteady wake reduces the overall film cooling effectiveness. However, the unsteady wake with trailing edge coolant ejection enhances the overall effectiveness. The results also show that the overall filming cooling effectiveness increases by using heavier coolant for trailing edge ejection and for blade surface film cooling.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3