Heat Transfer Predictions for Rotating U-Shaped Coolant Channels With Skewed Ribs and With Smooth Walls

Author:

Bonhoff Bernhard1,Tomm Uwe1,Johnson Bruce V.1,Jennions Ian2

Affiliation:

1. ABB Corporate Research, Switzerland

2. ABB Power Generation, Baden, Switzerland

Abstract

A computational study was performed for the flow and heat transfer in rotating coolant passages with two legs connected with a U-bend. The dimensionless flow conditions and the rotational speed were typical of those in the internal cooling passages of turbine blades. The calculations were performed for two geometries and flow conditions for which experimental heat transfer data were obtained under the NASA HOST project. The first model had smooth surfaces on all walls. The second model had opposing ribs staggered and angled at 45 deg. to the main flow direction on two walls of the legs, corresponding to the coolant passage surfaces adjacent to the pressure and suction surfaces of a turbine airfoil. Results from these calculations were compared with the previous measurements as well as with previous calculations for the nonrotating models at a Reynolds number of 25,000 and a rotation number of 0.24. At these conditions, the predicted heat transfer is known to be strongly influenced by the turbulence and wall models. The differential Reynolds-stress model (RSM) was used for the calculation. Local heat transfer results are presented as well as results averaged over wall segments. The averaged heat transfer predictions were close to the experimental results in the first leg of the channel, while the heat transfer in the second leg was overestimated by RSM. The flow field results showed a large amount of secondary flow in the channels with rotational velocities as large as 90 percent of the mean value. These secondary flows were attributed to the buoyancy effects, the Coriolis forces, the curvature of the bend and the orientation of the skewed ribs. Details of the flow field are discussed. Both the magnitude and the change of the heat transfer were captured well with the calculations for the rotating cases.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3