Investigation of Flow Behavior of Turbulent Wall-Jet in the Viscous Shear Regime With Moving Wall Condition

Author:

Behera Vishwa Mohan1,Rathore Sushil Kumar1

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology Rourkela , Rourkela, Odisha 769008, India

Abstract

AbstractThis work involves studying the effects of plate motion on the turbulent flow behavior of a wall jet stream flowing over a flat plate moving at a constant velocity in a quiescent atmosphere. A modified low-Reynolds-number turbulence model developed by Yang and Shih (YS model) is used to perform the numerical investigation. The YS model involves applying integration to a wall technique to capture the flow and heat transfer phenomenon in the near-wall region. The Reynolds number is taken as 15,000 and Prandtl number of the fluid as 7. The plate motion effect on the flow behavior is observed for the various velocity ratios Up =0−2. The velocity vector diagrams and the local velocity profiles at various axial locations are plotted to analyze the flow pattern variation with the plate velocity. Based on the investigation of velocity profiles, nearly self-similar velocity profiles are noticed for Up=0, 0.5, and 2 whereas for Up=1.0 and 1.5, the velocity profiles display similarity near the wall but diverge away from the wall. The turbulent kinetic energy (TKE) (k)  and its dissipation rate (ε) within the viscous shear regime are predicted for moving plate conditions. The dissipation rate appears to be higher for higher velocity ratios. Overall, the plate motion significantly influences the flow field.

Funder

Science and Engineering Research Board

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3