Knowledge-Based Process Design Optimization in Blisk Manufacturing

Author:

Landwehr Markus1,Ganser Philipp1,Vinogradov Georg1,Bergs Thomas2

Affiliation:

1. Fraunhofer Institute for Production Technology, IPT , Aachen 52074, Germany

2. Laboratory for Machine Tools and Production Engineering WZL, Fraunhofer Institute for Production Technology, IPT , Aachen 52074, Germany

Abstract

Abstract The manufacturing process of blade-integrated disks (blisks) represents one of the most challenging tasks in turbomachinery manufacturing. The requirement is to machine complex, thin-walled blade geometries with high aspect ratios made of difficult-to-cut materials. In addition, extremely tight tolerances are required, since the smallest deviations can lead to a reduction in efficiency of the blisk in the later use. Nowadays, the ramp-up phase for the manufacturing of a new blisk is time and cost-intensive. To find a suitable manufacturing process that meets the required tolerances of the blisk, many experimental tests with different process parameters and strategies are necessary. The used approach is often trial and error, which offers limited testing opportunities, is time-consuming and waste of resources. Therefore, the objective of this paper is to develop a knowledge-based process design optimization in blisk manufacturing. For this purpose, this paper picks up the results from our previous work. Based on these results, an experimental validation of the two process design tasks “number of blocks” and “block transition” is conducted. As part of the validation, the results of machining tests on a demonstrator blisk made of Inconel 718 are presented and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference12 articles.

1. Effizienzsteigerung in Der Entwicklung – Zeitersparnis Als Wettbewerbsvorteil Bei Komplexen Interdisziplinären Prozessen;Roi Dialog,2009

2. Recent Advances in Modelling of Metal Machining Processes;CIRP Ann.,2013

3. Knowledge-Based Adaptation of Product and Process Design in Blisk Manufacturing;ASME J. Eng. Gas Turbines Power,2022

4. An Overview of Multi-Task Learning;Natl. Sci. Rev.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3