A 3D Structure Mapping-Based Efficient Topology Optimization Framework

Author:

Li Kangjie1,Ye Wenjing23,Gao Yicong4

Affiliation:

1. The Hong Kong University of Science and Technology Department of Mechanical and Aerospace Engineering, , Clear Water Bay, Kowloon , Hong Kong 999077

2. The Hong Kong University of Science and Technology Department of Mechanical and Aerospace Engineering, , Clear Water Bay, Kowloon , Hong Kong 999077 ;

3. HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute , Shenzhen 518048 , China

4. Zhejiang University State Key Laboratory of Fluid Power and Mechatronic Systems, , Hangzhou 310000 , China

Abstract

Abstract It is well known that the computational cost of classic topology optimization (TO) methods increases rapidly with the size of the design problem because of the high-dimensional numerical simulation required at each iteration. Recently, the technical route of replacing the TO process with artificial neural network (ANN) models has gained popularity. These ANN models, once trained, can rapidly produce an optimized design solution for a given design specification. However, the complex mapping relationship between design specifications and corresponding optimized structures presents challenges in the construction of neural networks with good generalizability. In this paper, we propose a new design framework that uses deep learning techniques to accelerate the TO process. Specifically, we present an efficient topology optimization (ETO) framework in which structure update at each iteration is conducted on a coarse scale and a structure mapping neural network (SMapNN) is constructed to map the updated coarse structure to its corresponding fine structure. As such, fine-scale numerical simulations are replaced by coarse-scale simulations, thereby greatly reducing the computational cost. In addition, fragmentation and padding strategies are used to improve the trainability and adaptability of SMapNN, leading to a better generalizability. The efficiency and accuracy of the proposed ETO framework are verified using both benchmark and complex design tasks. It has been shown that with the SMapNN, TO designs of millions of elements can be completed within a few minutes on a personal computer.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on mechanical structure optimization based on topology theory;Fourth International Conference on Mechanical Engineering, Intelligent Manufacturing, and Automation Technology (MEMAT 2023);2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3