Implementation of a Bottom-Hole Assembly Program

Author:

Bhalla Kenneth1,Gong Lixin1,McKown George K.2

Affiliation:

1. Stress Engineering Services, Inc., 13800 Westfair East Drive, Houston, TX 77041

2. Smith International, Inc., 16740 Hardy Street, Houston, TX 77032

Abstract

A state of the art graphical user interface program has been developed to predict and design the bottom-hole assembly (BHA) performance for drilling. The techniques and algorithms developed in the program are based on those developed by Lubinski and Williamson. The BHA program facilitates conducting parametric studies and making field decisions for optimal BHA performance. The input parameters may include formation class, dip angle, hole size, drill collar size, number of stabilizers, and stabilizer spacing. The program takes into consideration bit-formation characteristics and interaction, drilling fluid weight, drill collar sizes, square collars, shock absorbers, measurement while drilling tools, reamer tools, directional tools, rotary steerable systems, etc. The output may consist of hole curvature (buildup or drop rate), hole angle, and weight on bit and is presented in drilling semantics. Additionally, the program can perform mechanical analyses and can solve for the bending moments and reaction forces. Moreover, the program has the capability to predict the wellpath using a drill ahead algorithm. The program consists of a mathematical model that makes assumptions of 2D, static, and constant hole curvature, resulting in a robust computationally efficient tool that produces rapid reliable results.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference3 articles.

1. Predicting Bottom Hole Assembly Performance;Lubinski

2. Lubinski, A. , 1961, “Maximum Permissible Dog-Legs in Rotary Bore Holes,” J. Pet. Technol.0022-3522, 13.

3. Lubinski, A., and Woods, H. B., 1953, “Factor Affecting the Angle of Inclination and Dog-Legging in Rotary Bore Holes,” API Drilling and Production Practice, Vol. 222.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3