Estimating UV-B, UV-Erithemic, and UV-A Irradiances From Global Horizontal Irradiance and MERRA-2 Ozone Column Information

Author:

Laguarda Agustín1,Abal Gonzalo23,Russo Paola23,Habte Aron44

Affiliation:

1. Universidad de la República (Udelar) Laboratorio de Energía Solar, Facultad de Ingeniería, , Montevideo 11700, Uruguay

2. Universidad de la República Laboratorio de Energía Solar, CENUR LN, , Salto 50000, Uruguay

3. Udelar Laboratorio de Energía Solar, CENUR LN, , Salto 50000, Uruguay

4. National Renewable Energy Laboratory , Golden, CO 80401

Abstract

Abstract The ground ultraviolet (UV) solar radiation is relevant due to its impacts on plastics degradation (mainly UVA) and on human health (UVB and erithemic UV (UVE)). UV ground measurements are not as ubiquitous as the relatively common global horizontal irradiance (GHI) measurements. Three simple models that estimate the UVA, UVB, and UVE components of solar irradiance from GHI and ozone column information are locally adjusted and validated. Five one-minute datasets from three sites in southeastern South America and two in the United States are used for simultaneous solar irradiance and UV data. All sites correspond to temperate mid-latitude regions. Simultaneous atmospheric total ozone column information is obtained from the reanalysis modern-era retrospective analysis for research and applications (MERRA-2) database for each site. Aside from locally adjusted models, average models with a single set of coefficients are also evaluated. For instance, the best average model is able to estimate UVE with a typical uncertainty below 12% and mean biases between ±3%, relative to the average of the measurements. Similar results are reported for the UVB and UVA components. These results, which can be useful in regions with similar climate and geography, provide a simple way to estimate UV irradiance under all-sky conditions with known uncertainty. This is an alternative to global satellite-based UV estimates, which can have high uncertainties at specific locations. Because MERRA-2 information has a global coverage, when coupled with good satellite-based estimates for GHI, UV irradiances can be estimated by this method over a large territory.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3