Optimal Gear Ratio Planning for Flywheel-Based Kinetic Energy Recovery Systems in Motor Vehicles

Author:

Dunne J. F.1,Ponce Cuspinera L. A.1

Affiliation:

1. School of Engineering and Informatics, The University of Sussex, Falmer, Brighton BN1 9QT, UK e-mail:

Abstract

An efficient computational methodology is proposed for optimal gear ratio planning in motor vehicle kinetic energy recovery systems (KERS) using a flywheel and continuously variable transmission (CVT). Initial modeling of a clutch-less KERS, comprising an input wheel, CVT, flywheel, and bearings, shows that the “least effort” or “minimum energy loss” optimal control problem can be formulated in two ways: one being a conventional two-state formulation involving input wheel angular velocity and CVT gear ratio, for which least effort control can be solved in simple cases with Pontryagin's maximum principle. The second formulation involves a single-state CVT gear ratio equation for which the input wheel angular velocity and acceleration appear as unknown time-dependent parameters. A novel multiparameter optimization methodology is proposed using the single-state formulation to find optimal CVT gear ratios by adopting two discrete time scales: one being a small time scale for numerical integration of the model, and the second involving discrete transitions, hundreds of times larger. Using Chebyshev polynomial expansions (CPEs) to initially generate sets of zero-energy-loss least effort kinematics for use as the time-dependent parameters in the CVT gear ratio equation, two solution approaches are developed. The first involves a single large discrete time transition, which only requires discretization of the input wheel angular acceleration at the start and end-of-transition. The second approach involves multiple large-scale discrete time transitions as a generalization of the first, but additionally needing discretization of the input wheel angular velocity, and the CVT gear ratio, plus dynamic programming to find the optimum. Both approaches are tested using the clutchless KERS model by assuming a “super CVT” gear ratio range (but with no restrictions for use with slipping clutches). Comparison with least effort control via Pontryagin's maximum principle shows that the single transition approach is in practice far superior. The single transition approach is then used to compare a minimum energy loss clutchless KERS gear ratio plan, with one obtained using constant input wheel angular acceleration as a benchmark. This comparison, involving power losses throughout the KERS, shows the very clear benefits of adopting an optimal gear ratio plan.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference26 articles.

1. Fuel-Optimal Control of CVT Powertrains;Control Eng. Pract.,2003

2. Nonlinear Control of a Continuously Variable Transmission (CVT);IEEE Trans. Control Syst. Technol.,2003

3. Analysis and Control of a Flywheel Hybrid Vehicular Powertrain;IEEE Trans. Control Syst. Technol.,2004

4. Liu, J., Zhou, Y., Cai, Y., and Su, J., 2007, “The Application of Generalized Predictive Control in CVT Speed Ratio Control,” IEEE International Conference on Automation and Logistics, Jinan, China, Aug. 18–21, pp. 649–654.10.1109/ICAL.2007.4338644

5. Youmin, W., and Penghuang, C., 2009, “The Optimal Test PID Control for CVT Control System,” IEEE International Conference on Intelligence and Intelligent Systems, Shanghai, China, Nov. 20–22, pp. 1–5.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3