Simulating Coil Embolization Treatments of Intracranial Aneurysms Using Computational Fluid Dynamics

Author:

Tulshibagwale Nikhil1,Gent Stephen P.2

Affiliation:

1. University of Minnesota, Minneapolis, MN

2. South Dakota State University, Brookings, SD

Abstract

In this study, a commercially available computational fluid dynamics (CFD) program was used to simulate coil embolization techniques, standard coiling (SC) and stent-assisted coiling (SAC), in simplified vessels that are representative of vessels found in the brain. The test models included a curved vessel, ranging from 3mm to 4mm in diameter. The vessel was afflicted with a spherical aneurysm, ranging from 8mm to 16mm in diameter. The four test cases were simulated without treatment, with SC treatment, and with SAC treatment, for a total of twelve simulations. The parameters of interest were blood volume flow into aneurysm, fluid velocity, wall shear stress (WSS), and vorticity. Results of the simulations indicate, on average, SC and SAC reduced volume flow into the aneurysm by 50% and to over 60%, respectively. Both SC and SAC appeared to reduce distal neck WSS. Both treatments reduced average overall dome WSS by approximately 76%. Average aneurysm neck velocity was reduced by both treatments; SC reduced neck velocity by 69% and SAC reduced neck velocity by 75%. Information on SC and SAC efficacy in idealized scenarios could assist medical professionals determining viable approaches for patient-specific cases and lays foundation for future CFD studies exploring coil embolization treatments.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3