Using Gurney Flaps to Control Laminar Separation on Linear Cascade Blades

Author:

Byerley Aaron R.1,Sto¨rmer Oliver2,Baughn James W.3,Simon Terrence W.4,Van Treuren Kenneth W.5,List Jo¨rg2

Affiliation:

1. U.S. Air Force Academy, Colorado Springs, CO

2. Bundesamt fur Wehrtechnik und Beschaffung, Manching, Germany

3. University of California at Davis, Davis, CA

4. University of Minnesota, Minneapolis, MN

5. Baylor University, Waco, TX

Abstract

This paper describes an experimental investigation of the use of Gurney flaps to control laminar separation on turbine blades in a linear cascade. Measurements were made at Reynolds numbers (based upon inlet velocity and axial chord) of 28 × 103, 65 × 103 and 167 × 103. The freestream turbulence intensity for all three cases was 0.8%. Laminar separation was present on the suction surface of the Langston blade shape for the two lower Reynolds numbers. In an effort to control the laminar separation, Gurney flaps were added to the pressure surface close to the trailing edge. The measurements indicate that the flaps turn and accelerate the flow in the blade passage toward the suction surface of the neighboring blade thereby eliminating the separation bubble. Five different sizes of Gurney flaps, ranging from 0.6% to 2.7% of axial chord, were tested. The laser thermal tuft technique was used to determine the influence of the Gurney flaps on the location and size of the separation bubble. Additionally, measurements of wall static pressure, profile loss, and blade-exit flow angle were made. The blade pressure distribution indicates that the lift generated by the blade is increased. As was expected, the Gurney flap also produced a larger wake. In practice, Gurney flaps might possibly be implemented in a semi-passive manner. They could be deployed for low Reynolds number operation and then retracted at high Reynolds numbers when separation is not present. This work is important because it describes a successful means for eliminating the separation bubble while characterizing both the potential performance improvement and the penalties associated with this semi-passive flow control technique.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3