Aerodynamic Performance Measurements of a Film-Cooled Turbine Stage: Experimental Results

Author:

Keogh R. C.1,Guenette G. R.1,Spadaccini C. M.1,Sommer T. P.2,Florjancic S.2

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

2. Alstom (Switzerland), Ltd., Baden, Switzerland

Abstract

Modern high performance gas turbine engines utilize film cooling to reduce the heat load on high-pressure turbine stage components, thereby increasing the maximum turbine inlet temperature at which the cycle can operate. However, increased turbine inlet temperature comes at the expense of a reduction in turbine efficiency. The objective of this research is to measure the aerodynamic performance of a film cooled turbine stage and to quantify the loss caused by film cooling. An un-cooled turbine stage was first fabricated with solid blading and tested using a newly developed short duration measurement technique. The stage was then modified to incorporate vane, blade and rotor casing film cooling. The film-cooled stage was then tested over a range of coolant-to-mainstream mass flow and temperature ratios for the same range of operating conditions (pressure ratios and corrected speeds) as the un-cooled turbine. This paper presents the experimental results for these two series of tests.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3