Affiliation:
1. Department of Mechanical Engineering, University of Tulsa, Tulsa, OK 74104e-mail:
2. Department of Mechanical Engineering, University of Tulsa, Tulsa, OK 74104 e-mail:
Abstract
Sand production is one of the major concerns for oil and gas producers. If production fluid velocities are not controlled properly, the produced sand may erode the pipelines which may result in pipe failures and halt the production causing economical losses as well as environmental issues. In order to better understand the erosion mechanism and improve current erosion models, it would be beneficial to identify the distribution of sand flowing inside the pipe. Therefore, sand sampling was performed at five different locations inside a 0.0732 m (3 in.) diameter horizontal pipe at L/D ∼ 150 using a pitot-style tube 6.35 mm (0.25 in.) in diameter. The probe was moved transversely from the top of the pipe and the face of the probe is facing the fluid flow to achieve sampling close to isokinetic conditions. Additionally, sampling experiments were conducted using the fixed mounted ports at the pipe wall. Using the fixed mounted ports, sampling is conducted both in a straight pipe section and elbow section. Experiments were performed in two different multiphase flow patterns (slug and wavy-annular) using two different particle sizes (150 μm and 300 μm) and three different liquid viscosities (1 cP, 10 cP, 40 cP). The influence of particle diameter, liquid viscosity, and the flow pattern on the sand distribution profiles will be discussed. From the experimental data, the recommended approaches for flowing concentration measurements are discussed. Finally, the implications of the sand concentration measurements on erosion are mentioned.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献