A Method for Solving Large-Scale Multiloop Constrained Dynamical Systems Using Structural Decomposition

Author:

Xiong Tao1,Ding Jianwan1,Wu Yizhong1,Chen Liping1,Hou Wenjie2

Affiliation:

1. National Engineering Research Center of CAD Software Information Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China e-mail:

2. Eaton (China) Investments Co. Ltd., Shanghai 200335, China e-mail:

Abstract

A structural decomposition method based on symbol operation for solving differential algebraic equations (DAEs) is developed. Constrained dynamical systems are represented in terms of DAEs. State-space methods are universal for solving DAEs in general forms, but for complex systems with multiple degrees-of-freedom, these methods will become difficult and time consuming because they involve detecting Jacobian singularities and reselecting the state variables. Therefore, we adopted a strategy of dividing and conquering. A large-scale system with multiple degrees-of-freedom can be divided into several subsystems based on the topology. Next, the problem of selecting all of the state variables from the whole system can be transformed into selecting one or several from each subsystem successively. At the same time, Jacobian singularities can also be easily detected in each subsystem. To decompose the original dynamical system completely, as the algebraic constraint equations are underdetermined, we proposed a principle of minimum variable reference degree to achieve the bipartite matching. Subsequently, the subsystems are determined by aggregating the strongly connected components in the algebraic constraint equations. After that determination, the free variables remain; therefore, a merging algorithm is proposed to allocate these variables into each subsystem optimally. Several examples are given to show that the proposed method is not only easy to implement but also efficient.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3