Effects of Size and Surface Treatment on Fatigue Life of Fused Filament Fabrication Manufactured Acrylonitrile Butadiene Styrene Parts

Author:

Huang Jianchi1,Miscles Eduardo2,Mellor Tara3,Ma Chao1,Kuttolamadom Mathew4,Wang Jyhwen1

Affiliation:

1. Department of Engineering Technology and Industrial Distribution; Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

2. Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131

3. Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095

4. Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843

Abstract

Abstract An experimental study was conducted to study the effects of geometric size and surface treatment on the fatigue life of fused filament fabrication (FFF) manufactured acrylonitrile butadiene styrene (ABS) parts. Moore rotating-beam fatigue tests were conducted with four different levels of loadings to obtain the S–N curves. Two different sizes (control size and large size) and three different surface treatment methods (as-printed, acetone-treated, and sandpaper polished) were studied. The larger specimens had significantly decreased fatigue life because of a larger volume, and hence a greater probability of defects for crack initiation and propagation, as compared with the control specimen. The acetone-treated specimen had a smooth surface. Its fatigue life, however, decreased significantly because the acetone treatment caused internal damage that weakened the specimen and was reported for the first time. The sandpaper polished specimen also had a smooth surface, but its effect on the fatigue life was insignificant because the extruded filament direction on the specimen surface was parallel to the loading direction. The present results lead to a better understanding of the effects of geometric size and surface treatment on the fatigue performance of FFF specimens. The study also provides important insights for the design of part size and surface treatment of three-dimensional (3D) printed plastic components for fatigue loading end-use applications.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3