Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data

Author:

San Andrés Luis12,Kim Tae Ho3

Affiliation:

1. Fellow ASME

2. Turbomachinery Laboratory, Texas A&M University, College Station, TX 77843-3123

3. Energy Mechanics Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Songbuk-gu, Seoul, Korea 136-791

Abstract

The paper introduces a thermohydrodynamic (THD) model for prediction of gas foil bearing (GFB) performance. The model includes thermal energy transport in the gas film region and with cooling gas streams, inner or outer, as in typical rotor-GFBs systems. The analysis also accounts for material property changes and the bearing components’ expansion due to temperature increases and shaft centrifugal growth due to rotational speed. Gas inlet feed characteristics are thoroughly discussed in bearings whose top foil must detach, i.e., not allowing for subambient pressure. Thermal growths determine the actual bearing clearance needed for accurate prediction of GFB forced performance, static and dynamic. Model predictions are benchmarked against published measurements of (metal) temperatures in a GFB operating without a forced cooling gas flow. The tested foil bearing is proprietary; hence, its geometry and material properties are largely unknown. Predictions are obtained for an assumed bearing configuration, with bump-foil geometry and materials taken from prior art and best known practices. The predicted film peak temperature occurs just downstream of the maximum gas pressure. The film temperature is higher at the bearing middle plane than at the foil edges, as the test results also show. The journal speed, rather than the applied static load, influences more the increase in film temperature and with a larger thermal gradient toward the bearing sides. In addition, as in the tests conducted at a constant rotor speed and even for the lowest static load, the gas film temperature increases rapidly due to the absence of a forced cooling air that could carry away the recirculation gas flow and thermal energy drawn by the spinning rotor; predictions are in good agreement with the test data. A comparison of predicted static load parameters to those obtained from an isothermal condition shows the THD model producing a smaller journal eccentricity (larger minimum film thickness) and larger drag torque. An increase in gas temperature is tantamount to an increase in gas viscosity, hence, the noted effect in the foil bearing forced performance.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference33 articles.

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3