Aerodynamic Design of a Highly Loaded Axial Flow Fan Rotor Using a Novel One-Dimensional Design Method With its Numerical Simulation

Author:

Shahsavari Ali1,Nili-Ahamadabadi Mahdi1

Affiliation:

1. Isfahan University of Technology, Isfahan, Iran

Abstract

This paper presents a novel one-dimensional design method based on the radial equilibrium theory and constant span-wise diffusion factor to redesign of NASA rotor 67 just aerodynamically with a higher pressure ratio at the same design point. A one-dimensional design code is developed to obtain the meridional plane and blade to blade geometry of rotor to reach the three-dimensional view of rotor blades. To verify the redesigned rotor, its flow numerical simulation is carried out to compute its performance curve. The experimental performance curve of NASA rotor 67 is used for validation of the numerical results. Structured mesh with finer grids near walls is used to capture flow field and boundary layer effects. RANS equations are solved by finite volume method for rotating zones and stationary zones. The numerical results of the new rotor show about 9% increase in its pressure ratio at both design and off design mass flow rate. The new rotor has a higher outlet velocity through its upper span improving bypass ratio of a turbofan engine. To prove the new fan ability of producing more bypass ratio, a thermodynamic analysis is conducted. The results of this analysis show 13% increase in bypass ratio and 5.7% decline in specific fuel consumption in comparison to NASA rotor 67.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A flexible method for geometric design of axial compressor blades;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3