Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base

Author:

Bowen Landen1,Springsteen Kara1,Feldstein Hannah2,Frecker Mary3,Simpson Timothy W.4,von Lockette Paris5

Affiliation:

1. Mechanical Engineering, The Pennsylvania State University, University Park, State College, PA 16802

2. The Pennsylvania State University, University Park, State College, PA 16802

3. Fellow ASME, Professor of Mechanical Engineering and Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA 16802 e-mail:

4. Fellow ASME Professor of Mechanical and Industrial Engineering, The Pennsylvania State University, University Park, State College, PA 16802

5. Mem. ASME Associate Professor of Mechanical Engineering, The Pennsylvania State University, University Park, State College, PA 16802

Abstract

Of special interest in the growing field of origami engineering is self-folding, wherein a material is able to fold itself in response to an applied field. In order to simulate the effect of active materials on an origami-inspired design, a dynamic model is needed. Ideally, the model would be an aid in determining how much active material is needed and where it should be placed to actuate the model to the desired position(s). A dynamic model of the origami waterbomb base, a well-known and foundational origami mechanism, is developed using adams 2014, a commercial multibody dynamics software package. Creases are approximated as torsion springs with both stiffness and damping. The stiffness of an origami crease is calculated, and the dynamic model is verified using the waterbomb. An approximation of the torque produced by magneto-active elastomers (MAEs) is calculated and is used to simulate MAE-actuated self-folding of the waterbomb. Experimental validation of the self-folding waterbomb model is performed, verifying that the dynamic model is capable of accurate simulation of the fold angles.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3