Brittle to Plastic Transition in the Dynamic Mechanical Behavior of Partially Saturated Granular Materials

Author:

Iveson Simon M.1,Page Neil W.1

Affiliation:

1. Faculty of Engineering and Built Environment, University of Newcastle, Callaghan NSW 2308, Australia

Abstract

The effect of liquid viscosity, surface tension and strain rate on the deformation behavior of partially saturated granular material was studied over a ten order of magnitude range of capillary number (the ratio of viscous to capillary forces). Glass spheres of average size 35 microns were used to make pellets of 35% porosity and 70% liquid saturation. As the capillary number increased, the failure mode changed from brittle cracking to ductile plastic flow. This change coincided with the transition from strain-rate independent flow stress to strain-rate dependent flow stress noted previously [Iveson, S. M., Beathe, J. A., and Page, N. W., 2002, “The Dynamic Strength of Partially Saturated Powder Compacts: The Effect of Liquid Properties,” Powder Technol., 127, pp. 149–161]. This change in failure mode is somewhat counter-intuitive, because it is the opposite of that observed for fully saturated slurries and pastes, which usually change from plastic to brittle with increasing strain rate. A model is proposed which predicts the functional dependence of flow stress on capillary number and also explains why the flow behavior changes. When capillary forces dominate, the material behaves like a dry powder: Strain occurs in localized shear planes resulting in brittle failure. However, when viscous forces dominate, the material behaves like a liquid: Shear strain becomes distributed over a finite shear zone, the size of which increases with strain rate. This results in less strain in each individual layer of material, which promotes plastic deformation without the formation of cracks. This model also explains why the power-law dependency of stress on strain rate was significantly less than the value of 1.0 that might have been expected given that the interstitial liquids used were Newtonian.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3