An Experimental Study of a Turbulent Wall Jet on Smooth and Transitionally Rough Surfaces

Author:

Rostamy N.,Bergstrom D. J.1,Sumner D.1,Bugg J. D.1

Affiliation:

1. Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9 Canada

Abstract

The effect of surface roughness on the mean velocity and skin friction characteristics of a plane turbulent wall jet was experimentally investigated using laser Doppler anemometry. The Reynolds number based on the slot height and exit velocity of the jet was approximately Re = 7500. A 36-grit sheet was used to create a transitionally rough flow (44 < ks+ < 70). Measurements were carried out at downstream distances from the jet exit ranging from 20 to 80 slot heights. Both conventional and momentum-viscosity scaling were used to analyze the streamwise evolution of the flow on smooth and rough walls. Three different methods were employed to estimate the friction velocity in the fully developed region of the wall jet, which was then used to calculate the skin friction coefficient. This paper provides new experimental data for the case of a plane wall jet on a transitionally rough surface and uses it to quantify the effects of roughness on the momentum field. The present results indicate that the skin friction coefficient for the rough-wall case compared to a smooth wall increases by as much as 140%. Overall, the study suggests that for the transitionally rough regime considered in the present study, roughness effects are significant but mostly confined to the inner region of the wall jet.

Publisher

ASME International

Subject

Mechanical Engineering

Reference20 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3