Decay Rates for the Hollow Circular Cylinder

Author:

Stephen N. G.1,Wang M. Z.1

Affiliation:

1. Department of Mechanical Engineering, The University, Southampton, SO9 5NH, U.K.

Abstract

The self-equilibrated end load problem for a hollow circular cylinder is considered using the Papkovitch-Neuber solution to the elastostatic displacement equations of equilibrium; both axi- and nonaxisymmetric solutions are derived. The requirement of zero traction on the surface generators of the cylinder leads to an eigenequation whose roots determine the rate of decay with axial coordinate. The locus of the smaller roots is plotted for circumferential harmonic loadings n = 0, 1, 2, and 3, for different wall thicknesses, and supplement previously known decay rates for the solid section and the circular cylindrical shell which are the extremes of diameter ratio. The loci are of considerable intricacy, and for small wall thickness, simple shell theory and two modes of decay for the semi-infinite plate are employed to identify the various modes of decay. Whereas for the solid cylinder the characteristic decay length of Saint-Venant’sprinciple is the radius (or diameter), for the hollow cylinder it becomes possible to discriminate between “wall thickness” and “rmt” modes of decay according to the limiting behavior as the cylinder assumes shell-like proportions; the one exception is “membrane bending” for which self-equilibrating end loading does not decay as thickness tends to zero.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3